
A
MOE University

Course

MOE U courses are made available for the
benefit the FIRST robotics universe by:

The Miracle Workerz, FIRST Team 365
First State Robotics, Inc.

Wilmington, Delaware
www.moe365.org

Basics of the Stamp Processor
and

the Programming Language

MOE University

Shiping Zhang & Devon

Oct. 20, 2003

BASIC Stamp

BASIC Stamp 2 Pins
Pin 1: SOUT

Transmits serial data during
programming and using the
DEBUG instruction

Pin 2: SIN
Receives serial data during
programming

Pin 3: ATN
Uses the serial DTR line to
gain the Stamps attention
for programming.

Pin 4. VSS
Communications
Ground (0V).

P0

Pins 5-20:
Input/Output (I/O)
pins P0 through P15

P1
P2
P3
P4
P5
P6
P7 P8

P9
P10
P11
P12
P13
P14
P15

 Pin 21. VDD
Regulated 5V.

 Pin 22. RES
Reset- LOW to
reset

 Pin 23. VSS
Ground (0V)

Pin 24. VIN
Un-regulated
input voltage
(5.5-15V)

RAM Memory
• The code space is 2K bytes (2048 bytes) in size and fills

from the bottom up.
• INS, OUTS and DIRS are the registers (RAM locations)

which hold the status of the I/O pins.
• REG0 – REG12 are 16-bit registers (word sized) used for

general variable storage.
• The variable registers may hold:

– 13 16-bit variables (Words)
– 26 8-bit variables (Bytes)
– 52 4-bit variables (Nibbles)
– 208 1-bit variables (Bits)

OR
– Any combination of the above

within memory size constraints.

• The I/O can also be addressed as nibbles, bytes
or the entire word.

IN0
OUT0
DIR0

IN15
OUT15
DIR15

TO As BITS

IND
OUTD
DIRD

INC
OUTC
DIRC

INB
OUTB
DIRB

INA
OUTA
DIRA

As
NIBBLES

(High Byte)
INH

OUTH
DIRH

(Low Byte)
INL

OUTL
DIRL

As
BYTES

INS
OUTS
DIRS

As 16-Bit
WORDS

Programming Languages

• basic
• fortran
• C/C++
• Perl
• Java

PBASIC

• Simple

• Easy

• Reach instructions
 • common
 • specialized

BASIC Stamp Editor

DEBUG “Hello World”
‘{$STAMP BS2}
DEBUG “Hello World”

Select Stamp model Click to run

DEBUG Window

Help Files

Instruction Syntax Convention

• BASIC Stamp instructions follow a common code
 convention for parameters (parts) of instructions.

• Take for example the FREQOUT instructions, which may
 be used to generate tones from a speaker:
 FREQOUT Pin, Period, Freq1 {, Freq2}

• The instruction requires that the Pin, Period, and Freq1
 is supplied and that each are separated by commas.
• Optionally, the user MAY provide Freq2 indicated by braces { }.

• While PBASIC is NOT case-sensitive, the common
 convention is to capitalize instructions, and use 1st letter
 upper-case for all other code.

Rules for Variable Names

• Variables cannot contain special characters
 such as !,@,$ except for an underscore, _.
• Variables may contain numbers but cannot
 start with a number.
• Variable names cannot be a PBASIC
 instruction.
• Declare all variables at the top of your code
 and comment their use.
• Size the variable appropriate to its use
 conserving memory whenever possible.

Example Variable Names

x VAR BYTE 'General use variable
PressCount VAR WORD 'Holds number of times
Pot_Value VAR WORD 'Value of Pot
Switch1 VAR BIT 'Value of switch 1

My Count Space in name
1Switch Starts with a value
Stop! Invalid name character
Count PBASIC instruction

Examples of legal variable names:

Examples of illegal variable names:

Variable Modifiers
 Symbol Definition
LOWBYTE low byte of a word
HIGHBYTE high byte of a word
BYTE0 byte 0 of a word
BYTE1 byte 1 of a word
LOWNIB low nibble
HIGHNIB high nibble
NIB0 - NIB3 individual nibbles
LOWBIT low bit
HIGHBIT high bit
BIT0 - BIT15 individual bits

Robot VAR WORD
Wheels VAR Robot.HIGHNIB ‘bits 12-15
Arms VAR Robot.NIB0 ‘bits 0-3

Examples:

Variables

 Basic unit

• bit - 1 bit
• nibble - 4 bits
• byte - 8 bits
• word - machine
 dependent

 Types

• char - 8 bits
• integer - 16 bits
• long integer – 32 bits
• long long - 64 bits
• float - 32 bits
• double float - 64 bits
• long double - 128 bits

 Number Representations

 Types Examples Decimal Values

Bin (base 2) 101101011 363

Oct (base 8) o15021 6673

Hex (base 16) 0x8A02F5 9044725

 Number Conversion Table
Binary Hex Decimal
 0000 0 0
 0001 1 1
 0010 2 2
 0011 3 3
 0100 4 4
 0101 5 5
 0110 6 6
 0111 7 7
 1000 8 8
 1001 9 9
 1010 A 10
 1011 B 11
 0100 C 12
 1101 D 13
 1110 E 14
 1111 F 15

Data Types

Primitive char, integer, float, etc.
Array vector indexed with numbers
Hash vector indexed with keys
Class complex/combined

PBASIC Variable Types

Name Size Values Value Range
BIT 1 bit 2 0 or 1
NIB 4 bits 2 0 - 15
BYTE 8 bits 2 0 - 255
WORD 16 bits 2 0 - 65535

 1

 8

 4

 16

Binary Operators (not complete)

Symbol
 +
 -
 *
 /
 <<
 >>
 &
 |
 ^

Description
Add
Subtract
Multiply
Divide
Shift left
Shift right
Logical AND
Logical OR
Logical XOR

Unary Operators (not complete)

Symbol
 ABS
 COS
 ~
 -
 SIN
 SQR

Description
Returns absolute value
Returns consine
Inverse
Negative
Returns sine
Returns square root

Order of Math Operation
• The BASIC Stamp solves math equationsfrom left to right.
 The steps of computing 12 + 3 * 2 / 4:

12 + 3 = 15
15 * 2 = 30
 30 / 4 = 7

• The BASIC Stamp only performs integer math.
 30 / 4 results 7, not 7.5. Be careful with the order.

3 / 2 * 10 = 10 (not 15!)
10 * 3 / 2 = 15

• Use parentheses to show intention

(12 + 3) * 2 / 4 (clear to others what you intend)
12 + (3 * 2 / 4)

Stamp I/O (Input/Output)
• 16 I/O pins on the BS2x labeled P0 to P15.

 These are the pins through which input and
 output devices may be connected.

• Each pin may act as an input from a device,
 or as an output to a device.

 Depend on program codes.

BASIC Stamp I/O

• Serial Input/Output: connect to PC

• Pins 0-15: Sense/Set voltage
• High (5V)

• Debugging
• Loading program

• Low (0V)

Flow Control
Branching

Looping

Memory access

IF…THEN Compare and conditional branch
GOTO Branch to an address
GOSUB Branch to a subroutine
RETURN Return from a subroutine

FOR…NEXT Setup a loop

READ Read a byte from memory
WRITE Write a byte to memory

Instructions for Pin Control

• HIGH defines the pin to be an output and sets it to a HIGH state,
digital 1 or 5V.
– HIGH pin (pin takes a value between 0-15, e.g. HIGH 8)

• LOW defines the pin to be an output and sets it to a LOW state,
digital 0 or 0V.
– LOW pin (pin takes a value between 0-15, e.g. LOW 8)

• INPUT sets the specified pin to input mode.
– INPUT pin (pin takes a value between 0-15, e.g. INPUT 10)

Program Execution

• Data input
 from files, mouse, keyboard, joystick, etc.

• Data processing
 signal manipulation (math calculation, etc.)

• Data output
 to screen, files, printers, motors, etc.

Execution Flow

Input

Process

Output

Stamp Execution Flow

Poll Pins’ Voltage

Decide how long each pin to stay high or low
Check which pins are high or low
Decide which pins to set high or low OR exit

Set Pins’ Voltage

BASIC Stamp Directive

• Stamps come with several different models
 1, 2, 3e, 2sx, 2p, etc.

• Must specify model type (via one of three
methods):
 • Directive: ‘{$STAMP BS2sx, prog2.bsx}
 • File extension: prog1.bsx
 • Predefined default

• Assume program contain the directive
 ‘{$STAMP BS2sx} ‘indicates to use the BASIC tamp 2sx

A Simple Program
‘ a simple demo program
‘ loop through 10 elements of an array (vector)
‘=== declare variables
index VAR NIB ‘ 4 bits, maximum value 15
vector VAR WORD(10) ‘array data
‘=== first assign a value to each element
FOR index = 0 TO 9
 vector(index) = index
NEXT
‘=== then print the value of each element
FOR index = 0 TO 9
 DEBUG ? vector(index) ‘ print to screen
NEXT

A Simple Program (Perl version)
#!/usr/local/bin/perl
=== not necessary to declare variables
my ($index, @vector);
=== first assign a value to each element
for $index (0 .. 9)
 {
 $vector[$index] = $index;
}
=== then print the value of each element
for($index = 0; $index < 10; $index++)
{
 print $vector[$index], “\n”; # print to screen
}

Output - Connecting an LED
• Connect an LED to P8 as shown:

• In this configuration a LOW, or 0V, at P8 will allow current to flow
through the LED to Vdd (+5V) lighting it. When P8 is HIGH (+5V),
no current will flow and the LED will not light. The LED is Active
Low.

An LED is a diode, meaning electrons can flow in
only one direction, so polarity is important. The LED
should have a flat side indicating the cathode or
negative terminal. Also, the anode (positive
terminal) generally has a longer lead than the
cathode.

Connected on P8.
Angle of shot
makes it appear
to be on P9.

Vdd, NOT Vin.

Note cathode:
the ‘flat side’ of
LED

220 ohm = RED RED BROWN GOLD

Blinking the LED with HIGH, LOW

• Use the Stamp Editor to enter the following program:

• Download or run the program.

• Monitor the LED. It should blink at a rate of 1 second OFF, 5
seconds ON. If not, check your configuration and code.

‘Prog 4A: Blink LED program

Main:
 HIGH 8 'Turn off LED
 PAUSE 1000 'Wait 1 second
 LOW 8 'Turn on LED
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

BUTTON Instruction

BUTTON Pin, DownState, Delay, Rate, Workspace, TargetState, Address

Pin (0-15) specify the I/O pin and set it to input mode.

DownState (0 or 1) specify the logical state when the button is pressed.

Delay (0-255) specify minimum press time before auto-repeat starts.

Rate (0-255) specify number of cycles between auto-repeats.

Workspace a byte variable used by BUTTON for workspace.

TargetState (0 or 1) specify the state to branch

Address a label specifying where to branch

Simple BUTTON circuit

Vss

Vdd

To I/O pin

10 kΩ

PB Switch

 Active-low
(downstate = 0)

Demo Program (BUTTON.bas)
‘With the active-low circuit connected to pin 0,
‘when you press the button, anasterisk(*) will
‘be printed on the screen.

BtnWrk VAR BYTE ‘Workspace
Loop:
 BUTTON 0, 0, 255, 250,BynWrk,0,NoPress
 DEBUG “*”
 ‘can take other actions, such as turn on/off the wheels
NoPress:
 GOTO Loop

